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ABSTRACT

We study possible anomalous CP -violating Higgs couplings to µµ̄ and tt̄ fully

model-independent way through top-quark pair productions at muon colliders. As-

suming additional non-standard neutral Higgs bosons, whose couplings with top-

quark and muon are expressed in the most general covariant form, we carry out

analyses of effects which they are expected to produce via CP -violating asymmetries

and also the optimal-observable (OO) procedure under longitudinal and transverse

muon polarizations. We find the measurement of the asymmetry for longitudinal

beam polarization could be useful to catch some signal of CP violation, and an OO

analysis might also be useful if we could reduce the number of unknown parame-

ters with a help of other experiments and if the size of the parameters is at least

O(1) ∼ O(10).
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1. Introduction

It is widely known that the standard model of the electroweak interaction (SM) has

been so far quite successful in describing various phenomena below the electroweak

scale with high precision. Its top-quark and Higgs-boson sectors are however still

not fully-tested part of the model. If there exists any new physics beyond the SM

within our reach, its effects will be likely to appear in those sectors. Therefore it

is worth to look for experiments which allow for a comprehensive investigation of

top-quark and Higgs-boson properties.

Anomalous top-quark interactions could be tested, for instance, at the eē col-

liders in the International Linear Collider (ILC) project [1]. However it is not easy

to study Higgs sector thereby. Muon colliders were proposed as an ideal machine

to explore Higgs properties [2]. From a purely theoretical point of view, muon

colliders are quite similar to eē colliders, but the fact that a muon is much heavier

than an electron could provide with a non-negligible difference in phenomenological

studies of Higgs sector.

Indeed many authors have studied how to analyze Higgs-top interactions at

muon colliders. Most of them focused on the resonance region, i.e., direct Higgs

productions, and/or µµ̄ → 〈Higgs〉 → tt̄ in the framework of some specific models

with multi Higgs doublets, like MSSM, and pointed out that a muon collider will

be a useful tool to identify CP properties of Higgs scalars [2]–[4].

As a complementary work to them, we study in this article possible anomalous

Higgs interactions with µµ̄ and tt̄ in a fully model-independent way through µµ̄ →
tt̄ processes. Our main purpose is to clarify to what extent we would be able to draw

a general conclusion on those interactions without assuming any particular models

at muon colliders in off-resonance region. In other words, we aim to study the

possibility and limit of muon colliders for model-independent analyses of possible

new physics in the top-quark and Higgs-boson sectors.

After describing our calculational framework in section 2, we compute CP -

violating asymmetries for both longitudinal and transverse beam polarizations

in section 3, where based on the results we also discuss a detectability of the

anomalous-coupling parameters. In section 4, we study whether the optimal-



observable procedure is effective when we try to determine the anomalous param-

eters separately. Finally, a summary is given in section 5.

2. Framework

As mentioned in Introduction, we perform a model-independent analysis of pos-

sible non-standard Higgs interactions with top-quark/muon for longitudinal and

transverse beam polarizations. Let us summarize our framework first which is the

basis of our calculations. Throughout this paper, we express the standard-model

Higgs as h and the non-standard neutral Higgs as H .

Effective amplitude

The invariant amplitude of µµ̄ → (γ, Z, h, H) → tt̄ corresponding to Figure 1

is given as follows:

M(µµ̄ → tt̄) = Mγ + MZ + Mh + MH , (1)

where Mγ,Z are the standard γ and Z exchange terms

Mγ = Dγ(s) ū(pt)γ
αv(pt̄) · v̄(pµ̄)γαu(pµ), (2)

MZ = DZ(s) ū(pt)γ
α(At + Btγ5)v(pt̄)

× v̄(pµ̄)γα(Aµ + Bµγ5)u(pµ), (3)

with

At = 1 − (8/3) sin2 θW , Bt = −1, (4)

Aµ = −1 + 4 sin2 θW , Bµ = 1, (5)

t ttt t̄t̄t̄t̄

µµµµ µ̄µ̄µ̄µ̄

γ Z h H

Figure 1: Feynman diagrams for µµ̄ → (γ, Z, h, H) → tt̄



Dγ,Z(s) being the propagators multiplied by the coupling constants

Dγ(s) ≡ −2

3
e21

s
, (6)

DZ(s) ≡ g2

16 cos2 θW

1

s − M2
Z

, (7)

e, g, θW being the elementary charge, the SU(2) gauge coupling, the Weinberg

angle respectively, and s ≡ (pµ + pµ̄)
2,

Mh is the standard Higgs-boson exchange term

Mh = Dh(s) ū(pt)v(pt̄) · v̄(pµ̄)u(pµ), (8)

while MH is the non-standard Higgs exchange contribution, for which we assume

the most general covariant form:

MH = DH(s) ū(pt)(at + btγ5)v(pt̄)

× v̄(pµ̄)(aµ + bµγ5)u(pµ), (9)

with

Di(s) ≡
mµmt

v2

1

m2
i − s − imiΓi

(10)

(i = h, H), Γi and v being the total decay width and the vacuum expectation

value of the SM Higgs field. We treat at,µ and bt,µ as complex numbers to take into

account the possibility that they are form factors.

Readers may claim that we assume only one additional Higgs-boson in spite of

our statement that we perform a fully model-independent analysis. In fact, our

frame can incorporate any number of Higgs exchange terms. It will be clear by

re-expressing such an amplitude as

M[Non-SM Higgs] =
N

∑

i=1

DHi
(s) ū(pt)(a

i
t + bi

tγ5)v(pt̄) · v̄(pµ̄)(a
i
µ + bi

µγ5)u(pµ)

=
∑

i

ai
ta

i
µDHi

(s) ū(pt)v(pt̄) · v̄(pµ̄)u(pµ)

+
∑

i

ai
tb

i
µDHi

(s) ū(pt)v(pt̄) · v̄(pµ̄)γ5u(pµ)

+
∑

i

bi
ta

i
µDHi

(s) ū(pt)γ5v(pt̄) · v̄(pµ̄)u(pµ)

+
∑

i

bi
tb

i
µDHi

(s) ū(pt)γ5v(pt̄) · v̄(pµ̄)γ5u(pµ). (11)



Thus, all the contributions can be packed into our parameters as follows:

ataµ =
∑

i

ai
ta

i
µDHi

(s)/DH1
(s), (12)

atbµ =
∑

i

ai
tb

i
µDHi

(s)/DH1
(s), (13)

btaµ =
∑

i

bi
ta

i
µDHi

(s)/DH1
(s), (14)

btbµ =
∑

i

bi
tb

i
µDHi

(s)/DH1
(s). (15)

Beam polarization

The beam polarization, P , along one axis (polarization axis) whose direction is

defined by a unit vector s is given by

P =
ρ+s − ρ−s

ρ+s + ρ−s

, (16)

where ρ±s is the number density of the particle in each beam whose spin component

on this axis is ±s. We can take into account this polarization by multiplying the

spin vector sα in the projection operator u(p)ū(p) and v(p)v̄(p) by P . That is, we

are to use (0, Ps) as the spin vector in its rest frame.

In the following, we choose the direction of pµ as the z axis and express the

azimuthal angle of s as φ. Then the degree of the longitudinal polarization is

given by PL = Psz, that of the transverse polarization by PT =
√

P 2 − P 2
L, and

consequently

(0, Ps) = (0, PT cos φ, PT sin φ, PL). (17)

The µ and µ̄ spin vectors in the µµ̄ CM frame are obtained from (17) via appropriate

Lorentz transformations as

sα = (PLγβ, PT cos φ, PT sin φ, PLγ) , (18)

s̄α = (P̄Lγβ, P̄T cos φ̄, P̄T sin φ̄,−P̄Lγ) , (19)

where

β ≡
√

1 − 4m2
µ/s, γ ≡ 1/

√

1 − β2 (20)

and the momenta of µ and µ̄ in this frame are

pα =
1

2

√
s(1, 0, 0, β), p̄α =

1

2

√
s(1, 0, 0,−β). (21)



3. CP -violating asymmetries

It is straightforward to calculate the cross section σ(µµ̄ → tt̄) starting from ampli-

tude (1) as
d

d cos θ
σ(µµ̄ → tt̄) =

1

32πs

|pt|
|pµ|

|M(µµ̄ → tt̄)|2. (22)

We perform this via FORM [5], but the analytical result is a bit too long to give here

explicitly. Therefore we show in the following our results numerically. Throughout

our analysis in this article, we take |PL| = 1 or |PT | = 1. It may seem to be an

extreme and unrealistic assumption, but we chose the polarization this way because

our aim here is to know “to what extent” we could know about the anomalous

interaction (9), i.e., we would like to study the possibility and limit of muon colliders

for model-independent analyses of new physics beyond the standard model.

Numerical results

We study two CP -violating asymmetries AL and AT , the former of which is the

one for longitudinal beam polarization

AL =
σ(++) − σ(−−)

σ(++) + σ(−−)
, (23)

and the latter is the one for transverse polarization

AT =
σ(χ = π/2) − σ(χ = −π/2)

σ(χ = π/2) + σ(χ = −π/2)
, (24)

where σ(±±) express the cross sections for PL = P̄L = ±1, while σ(χ = ±π/2) are

the ones for PT = P̄T = 1 with χ ≡ φ − φ̄ = ±π/2. We here chose |χ| to be π/2

since it maximizes the CP -violation effects (see, e.g., [4]).

Concerning the decay widths of h and H , Γh,H, they are of course different

quantities, but we use the same formula for ΓH as Γh within the standard model

[6] (see the later discussions). The other SM parameters are taken as follows:

sin2 θW = 0.23, MZ = 91.187 GeV, v = 246 GeV,

mt = 174 GeV, mµ = 105.658 MeV, mh = 150 GeV.

In Figures 2 and 3 are presented AL as functions of
√

s and mH , while in Figures

4 and 5 are given AT in the same way for Re at,µ = Im at,µ = Re bt,µ = Im bt,µ = 0.2
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as an example to sketch a rough feature of these quantities. We find that the

absolute value of AL could be sizable, but that of AT is very small.

It may seem strange that there appears such big difference between |AL| and

|AT | though they are both CP -violating asymmetries computed with the same

anomalous parameters. The reason is in their denominators. In the case of AL,

not only the numerator σ(++) − σ(−−) but also the denominator receives little

contribution from γ/Z exchange terms, while they can contribute to σ(χ = ±π/2)

without being suppressed except in the difference σ(χ = π/2) − σ(χ = −π/2).

Indeed if we focus on the numerators alone, there is only small difference between

AL and AT . For
√

s = 550 GeV and mH = 500 GeV with the same anomalous

couplings as in the figures, e.g.,

AL : σ(++) − σ(−−) = 1.6 × 10−2 fb, (25)

AT : σ(χ = π/2) − σ(χ = −π/2) = 4.8 × 10−3 fb. (26)

It is obvious that the peaks in AL,T are all due to the H propagator, but readers

might wonder why AT changes its sign while AL not in the vicinity of s = M2
H .

Therefore, it would also be helpful to give a brief explanation here about those

different behaviors of them. As mentioned above, σ(χ = ±π/2) receive sizable

contributions from γ/Z exchange terms. This means the interference between the

γ/Z-exchange and H-exchange terms, which is proportional the H propagator, is

important in AT , and its sign changes thereby depending on whether s > M2
H or

s < M2
H . On the other hand, this is no longer the case for AL since the γ/Z-

exchange terms are suppressed in both σ(++) and σ(−−). Therefore the sign of

AL is determined by the difference of σ(±±), where the size of the amplitude MH

itself is much more crucial. Here we chose aµ = bµ as an illustration, which makes

σ(++) larger than σ(−−) and leads to positive AL as will be understood from

eq.(34) on MH(++) and a similar calculation for MH(−−). This also tells us that

different parameters, e.g., aµ = −bµ could make AL negative.

Detectability of the asymmetry

Let us study the detectability of AL, that is, the expected statistical precision

in its measurement, which tells us how precisely we would be able to determine



AL. For instance if we take
√

s = mH =500 GeV with Re at,µ = Re bt,µ = Im at,µ =

Im bt,µ = 0.2, AL becomes 0.73, while the cross sections are σ(++) = 5.0× 10−2 fb

and σ(−−) = 7.8×10−3 fb, leading to N ≃ 29ǫ events for an integrated luminosity

L = 500 fb−1, where we expressed the detection efficiency of tt̄ productions as ǫ.

They are combined to give the following statistical uncertainty:

δAL =
√

(1 − A2
L)/N = 0.68/

√
ǫL = 0.13/

√
ǫ. (27)

Consequently, the expected statistical significance NSD is

NSD ≡ |AL|/δAL = 5.7
√

ǫ. (28)

That is, we can confirm |AL| 6= 0 at 5.7
√

ǫ level. For example, NSD = 4.0 for

ǫ = 0.5. Here, assuming L = 500 fb−1 may be a bit too optimistic, but we used

this value considering that we aim to find the possibility and limit of the muon

colliders as mentioned in the beginning of this section. It is easy to transform our

numerical results for any other L.

We have given an example of NSD for
√

s = mH =500 GeV, but it is not

general, so let us show the results for some other
√

s in Table 1, changing also the

parameters as Re at,µ = Re bt,µ = Im at,µ = Im bt,µ = 0.1, 0.2, 0.3. There we find

that we would be able to observe some signal of CP violation as long as we are not

too far from the H pole.

√
s (GeV)

(a) (b) (c)

AL N NSD AL N NSD AL N NSD

450 0.08 7.6 0.2 0.40 11.7 1.5 0.73 25.7 5.4
480 0.19 9.4 0.6 0.64 21.1 3.8 0.88 61.8 14.4
500 0.26 10.5 0.9 0.73 28.7 5.7 0.92 91.6 21.8
520 0.23 10.1 0.7 0.69 25.2 4.8 0.90 77.8 18.2
550 0.12 8.8 0.4 0.51 15.9 2.4 0.81 40.9 8.9
600 0.05 7.7 0.1 0.29 10.4 1.0 0.63 19.8 3.6

Table 1: NSD as a function of
√

s (with ǫ = 1 for simplicity) for Re at,µ = Re bt,µ =
Im at,µ = Im bt,µ = 0.1 (a), 0.2 (b), and 0.3 (c)

We used the SM formula for ΓH as an appropriate approximation (ΓH =67.5

GeV for mH =500 GeV [6]), since we did not introduce any new light particles



that can appear in the final state of h and H decays. Strictly speaking, however,

a new mode like H → hh might be possible for Mh = 150 GeV and MH = 500

GeV. Instead of re-computing ΓH including such new modes, which demands us to

assume a concrete form of those couplings, we give NSD for ΓH = 80 and 100 GeV

with Re at,µ = Re bt,µ = Im at,µ = Im bt,µ = 0.2 in Table 2, which tells us that our

conclusion would not be affected so much, especially in the off-resonance region.

√
s (GeV) ΓH = Γh(mH) ΓH = 80 GeV ΓH = 100 GeV
450 1.5 1.4 1.3
500 5.7 4.4 3.2
550 2.4 2.3 2.1
600 1.0 1.0 1.0

Table 2: NSD as a function of
√

s for ΓH = 80 and 100 GeV, where ΓH = Γh(mH)
means that ΓH was computed with the SM formula (Γh(mH) = 67.5 GeV).

Parameter dependence of the asymmetry

Measuring AL would be quite interesting, but what AL receives is of course one

single combination of contributions from all the anomalous parameters. We are

performing a model-independent analysis of possible new-physics effects, but once

we get actual experimental data, our results are going to be applied for a realistic

model building. If AL does not depend on some parameters so much, it will be hard

to test any models in which those parameters play a significant role. Therefore it

must be important to see how AL depends on each parameter.

Let us study how NSD changes when we vary one parameter from 0.0 to 0.3.

The results are given in Tables 3 and 4, where NSD are presented for one of the

parameters = 0.0, 0.1, 0.2 and 0.3 with the others being fixed to be 0.2. There

Re at Re aµ Re bt Re bµ Im at Im aµ Im bt Im bµ

0.0 4.1 4.4 4.7 2.2 4.1 4.4 4.7 2.2
0.1 4.7 5.3 4.9 3.8 4.7 5.3 4.9 3.8
0.2 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7
0.3 7.0 5.6 7.1 7.7 7.0 5.6 7.1 7.7

Table 3: NSD as a function of each parameter for
√

s = 500 GeV with the rest
being fixed to be 0.2



Re at Re aµ Re bt Re bµ Im at Im aµ Im bt Im bµ

0.0 1.1 2.0 2.0 0.4 2.3 1.5 1.9 1.8
0.1 1.7 2.3 2.1 1.3 2.3 1.9 2.0 2.1
0.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
0.3 3.2 2.4 2.9 3.6 2.6 2.8 2.9 2.5

Table 4: NSD as a function of each parameter for
√

s = 550 GeV with the rest
being fixed to be 0.2

we observe that NSD receives a contribution from every parameter though there

are some differences among them, which indicates that any model will be testable

through measuring AL.

4. Optimal-observable analysis

The optimal-observable technique [7] is a useful tool for estimating expected sta-

tistical uncertainties in various coupling measurements. Suppose we have a cross

section
dσ

dφ
(≡ Σ(φ)) =

∑

i

cifi(φ), (29)

where fi(φ) are known functions of the final-state variables φ and ci’s are model-

dependent coefficients. The goal is to determine the ci’s. This can be done by using

appropriate weighting functions wi(φ) such that
∫

wi(φ)Σ(φ)dφ = ci. In general

different choices for wi(φ) are possible, but there is a unique choice for which the

resultant statistical error is minimized. Such functions are given by

wi(φ) =
∑

j

Xijfj(φ)/Σ(φ) , (30)

where Xij is the inverse matrix of Mij which is defined as

Mij ≡
∫

fi(φ)fj(φ)

Σ(φ)
dφ . (31)

When we use these weighting functions, the statistical uncertainty of ci is obtained

as

δci =
√

Xii σT /N , (32)

where σT ≡ ∫

(dσ/dφ)dφ and N is the total number of events.



We study whether we could get more information of the anomalous parameters

via this procedure. Here we focus on the longitudinal beam polarization, since

we found that it is practically impossible to catch any new-physics signal for the

transverse beam polarization even when we could fully use the total cross sections.

In oder to apply this technique to our analysis, we need to express the an-

gular distribution of the produced top quark in terms of the anomalous-coupling

parameters like eq.(29). We have altogether eight independent parameters since

we assumed the all couplings at,µ and bt,µ to be complex. Although our aim is to

perform an analysis as model-independently as possible, it will be too complicated

to treat them all equally. Therefore we here assume that the size of the imaginary

part of each parameter is much smaller than that of its real part. Since the imagi-

nary part of parameters (form factors) is often produced through higher order loop

corrections in an underlying theory, this assumption is not unreasonable. We also

drop the terms quartic in the anomalous parameters.

With this reduced parameter set and assumption, the top-quark angular distri-

bution should be represented as

d

d cos θ
σ++(µµ̄ → tt̄)

= fSM(θ) + caafaa(θ) + cabfab(θ) + cbafba(θ) + cbbfbb(θ), (33)

where fSM(θ) expresses the SM contribution,

caa ≡ (Re at)(Re aµ), cab ≡ (Re at)(Re bµ),

cba ≡ (Re bt)(Re aµ), cbb ≡ (Re bt)(Re bµ),

and fij(θ) (i, j = a, b) are all independent of each other. If we reverse the signs of

cab and cba, we get dσ
−−

(µµ̄ → tt̄).

Practically, however, fia(θ) and fib(θ) become equivalent in the limit of mµ → 0.

We can see this as follows: In calculating dσ++, the muon-spinor part becomes

v̄+(pµ̄)(aµ + bµγ5)u+(pµ) ≃ v̄+(pµ̄)(aµ + bµγ5)
1 + γ5

2
u(pµ)

= (aµ + bµ)v̄+(pµ̄)u+(pµ) (34)

in the limit. That is, aµ and bµ contribute almost equally to dσ++, which leads to

faa(θ) ≃ fab(θ), fba(θ) ≃ fbb(θ).



Since we keep mµ finite, it is in principle possible to perform an analysis treating

all fij(θ) as independent functions, but it is clear that we end up having very poor

precision thereby [8]. Therefore we neglect their differences from the beginning and

start from
d

d cos θ
σ++(µµ̄ → tt̄) ≃ f1(θ) + caf2(θ) + cbf3(θ), (35)

where ca ≡ caa + cab, cb ≡ cba + cbb, f1(θ) = fSM(θ), f2(θ) = faa(θ) ≃ fba(θ) and

f3(θ) = fba(θ) ≃ fbb(θ).

Using these functions we obtain the following results as the matrix (31) for
√

s = 550 GeV and mH = 500 GeV:

M11 = 7.75 · 10−3, M12 = 5.80 · 10−2, M13 = −2.38 · 10−3,

M22 = 4.35 · 10−1, M23 = −1.79 · 10−2, M33 = 7.37 · 10−4, (36)

where we used f1(θ) for Σ(φ) in eq.(31). We then compute the (2, 2) and (3, 3)

elements of the inverse matrix of M :

X22 = 3.68 · 106, X33 = 5.38 · 108 .

This means the expected statistical uncertainty in ca,b measurements are

δca = 1.92 · 103/
√

L, δcb = 2.32 · 104/
√

L . (37)

This tells us that we need L = 3.7 · 106 fb−1 for achieving δca = 1 and L = 5.4 · 108

fb−1 for δcb = 1, which are both far beyond our reach!

We then assume one of the parameters is determined in some other experiments

in order to look for realistic solutions. First, if ca was unknown (i.e., if cb was

measured elsewhere), the corresponding precision becomes δca = 44.5/
√

L, i.e.,

δca = 1.99 for L = 500 fb−1. We give also results for some other
√

s in Table 5.

Conversely, if cb is undetermined (i.e., only ca is known), we have δcb = 539/
√

L,

i.e., δcb = 24.1 for L = 500 fb−1. Some other results are in Table 6.

Therefore, if the size of ca is O(1), there is some hope to catch new-physics

signal thereby. On the other hand, |cb| is required to be at least O(10). Note that

it is never unrealistic to assume |ca,b| to be O(1) ∼ O(10) as is known in various

models with two (or multi) Higgs-doublets (see, e.g., [9] and the references therein).



√
s (GeV) δca

400 63.7/
√

L

450 41.1/
√

L

480 44.7/
√

L

520 44.7/
√

L

580 61.4/
√

L

600 75.6/
√

L

Table 5: Expected precision of ca determination for mH = 500 GeV

√
s (GeV) δcb

400 168/
√

L

450 227/
√

L

480 329/
√

L

520 447/
√

L

580 878/
√

L

600 1197/
√

L

Table 6: Expected precision of cb determination for mH = 500 GeV

What we could know via AL measurements is only on CP violation, while ca,b

are both combinations of CP -conserving and CP -violating parameters. Therefore

those two approaches could work complementarily to each other.

5. Summary

We have carried out a model-independent analysis of possible non-standard Higgs

interactions with tt̄ and µµ̄ through top-quark pair productions at future muon

colliders. As was pointed out in Refs.[2]–[4], the muon colliders are quite useful for

studying the Higgs sector around the resonance. Considering those preceding stud-

ies, our main purpose here was to see if we could also draw any useful information

in the off-resonance region without depending on any specific models.

Starting from the most general covariant amplitude, we computed two CP -

violating asymmetries for longitudinal and transverse beam polarizations in order

to see if we could get any signal of new-physics which breaks CP symmetry, and also

studied whether we could determine the non-standard-coupling parameters sepa-

rately through the optimal-observable (OO) procedure as a more detailed analysis.



We found that the longitudinal CP -violating asymmetry AL would be sizable,

while the transverse asymmetry AT is too small to be a meaningful observable. We

then estimated the detectability of AL and showed that we would be able to observe

some signal of CP violation as long as we are not too far from the H pole. We also

studied there in some detail how AL depends on each parameter, and found that

we have no parameter that contribute little, although there are some differences

among the parameters.

On the other hand, more detailed analyses via the OO procedure seem challeng-

ing. However, if we could reduce the number of unknown parameters with a help

of other experiments, and if the size of the parameters is at least O(1) ∼ O(10), we

might be able to get some meaningful information thereby. Readers may claim that

the use of the asymmetry AL is enough when we have only one unknown parameter,

but this is not necessarily true. What we could draw from AL is information on

pure CP violation, while we could also know something about CP -conserving part

through an OO analysis.

In our approach, we need the total cross section of µµ̄ → tt̄ and the angular

distribution of the final top quark, for which we only have to reconstruct the top-

quark jet axis. If we further try to study, e.g., the final lepton distributions in the

top-quark decays, we could get additional information on possible anomalous tbW

coupling, however in that case we would suffer from another suppression factor,

i.e., the branching ratio of the top-quark semileptonic decay. Therefore it will be

more advantageous to use the top-quark distribution as a whole when performing

off-resonance analyses at muon colliders.
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